English  |  中科院化学所  |  中国科学院
 首 页  人员 研究方向 研究成果 科研设备 招生招聘 图片展 联系方式 链接 科研进展
 
研究成果
论文
专利
专著
  论文 
当前位置:首页 > 曹安民 > 研究成果 > 论文

[1]       Cao A M, Veser G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles[J]. Nature Materials, 2010, 9(1): 75.

[2]       Zhang W, Chi Z X, Mao W X, et al. OneNanometerPrecision Control of Al2O3 Nanoshells through a SolutionBased Synthesis Route[J]. Angewandte Chemie International Edition, 2014, 53(47): 12776-12780.

[3]       Cao A M, Hu J S, Liang H P, et al. Self‐assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium‐Ion batteries[J]. Angewandte Chemie International Edition, 2005, 44(28): 4391-4395.

[4]       Hu J S, Ren L L, Guo Y G, et al. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(8): 1269-1273.

[5]       Zhong L S, Hu J S, Liang H P, Cao A M, et al. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment[J]. Advanced Materials, 2006, 18(18): 2426.

[6]       Piao J Y, Gu L, Wei Z, et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(12): 4900-4907.

[7]       Sun Y G, Piao J Y, Hu L L, et al. Controlling the Reaction of Nanoparticles for Hollow Metal Oxide Nanostructures[J]. Journal of the American Chemical Society, 2018, 140(29): 9070-9073.

[8]       Bin D S, Lin X J, Sun Y G, et al. Engineering hollow carbon architecture for high-performance K-ion battery anode[J]. Journal of the American Chemical Society, 2018, 140(23): 7127-7134.

[9]       Zhang T Q, Liu J, Huang L B, et al. Microbial-phosphorus-enabled synthesis of phosphide nanocomposites for efficient electrocatalysts[J]. Journal of the American Chemical Society, 2017, 139(32): 11248-11253.

[10]     Bin D S, Chi Z X, Li Y, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres[J]. Journal of the American Chemical Society, 2017, 139(38): 13492-13498.

[11]     Yang L P, Lin X J, Zhang X, et al. General synthetic strategy for hollow hybrid microspheres through a progressive inward crystallization process[J]. Journal of the American Chemical Society, 2016, 138(18): 5916-5922.

[12]     Piao J Y, Sun Y G, Duan S Y, et al. Stabilizing cathode materials of lithium-ion batteries by controlling interstitial sites on the surface[J]. Chem, 2018, 4(7): 1685-1695.

[13]     Bin D S, Li Y, Sun Y G, et al. Structural Engineering of Multishelled Hollow Carbon Nanostructures for HighPerformance NaIon Battery Anode[J]. Advanced Energy Materials, 2018, 8(26): 1800855.

[14]     Zhong L S, Hu J S, Cao A M, et al. 3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal[J]. Chemistry of Materials, 2007, 19(7): 1648-1655.

[15]     Liu Y, Lin X J, Sun Y G, et al. Precise Surface Engineering of Cathode Materials for Improved Stability of Lithium‐Ion Batteries[J]. Small, 2019: 1901019.

[16]     Xu Y S, Duan S Y, Sun Y G, et al. Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4334-4352.

[17]     Zhang D, Hu L L, Sun Y G, et al. Construction of uniform transition-metal phosphate nanoshells and their potential for improving Li-ion battery performance[J]. Journal of Materials Chemistry A, 2018, 6(19): 8992-8999.

[18]     Wang L, Sun Y G, Hu L L, et al. Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition[J]. Journal of Materials Chemistry A, 2017, 5(18): 8752-8761.

[19]     Jiang F, Li R M, Cai J H, et al. Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: facile synthesis and catalytic activities in the reduction of 4-nitrophenol[J]. Journal of Materials Chemistry A, 2015, 3(38): 19433-19438.

[20]     Mao W X, Zhang W, Chi Z X, et al. Core-shell structured Ce2S3@ZnO and its potential as a pigment[J]. Journal of Materials Chemistry A, 2015, 3(5): 2176-2180.

[21]     Chi Z X, Zhang W, Wang X S, et al. Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@ C for improved battery performance[J]. Journal of Materials Chemistry A, 2014, 2(41): 17359-17365.

[22]     Piao J Y, Liu X C, Wu J, et al. Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance[J]. ACS applied materials & interfaces, 2018, 10(27): 22896-22901.

[23]     Zhang W, Lin X J, Sun Y G, et al. Controlled Formation of Metal@Al2O3 Yolk-Shell Nanostructures with Improved Thermal Stability[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27031-27034.

[24]     Chi Z X, Zhang W, Wang X S, et al. Optimizing LiFePO4@C Core-Shell Structures via the 3-Aminophenol-Formaldehyde Polymerization for Improved Battery Performance[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22719-22725.

[25]     Li R M, Cao A M, Zhang Y J, et al. Formation of Nitrogen-Doped Mesoporous Graphitic Carbon with the Help of Melamine[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20574-20578.

[26]     Zhou X S, Yin Y X, Cao A M, et al. Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2824-2828.

[27]     Zhou X S, Cao A M, Wan L J, et al. Spin-Coated Silicon Nanoparticle/Graphene Electrode as a Binder-Free Anode for High-Performance Lithium-Ion Batteries[J]. Nano Research, 2012, 5(12): 845-853.

[28]     Bao-Hua Hou, Ying-Ying Wang, Jin-Zhi Guo, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10(19): 9218-9225.

[29]     Lin X J , Sun T Q , Yang L P , et al. A facile synthetic strategy for the creation of hollow noble metal/transition metal oxide nanocomposites[J]. Chemical Communications, 2019, 55: 1076-1079.

[30]     Piao J Y , Duan S Y , Lin X J , et al. Surface Zn doped LiMn2O4 for an improved high temperature performance[J]. Chemical Communications, 2018, 54: 5326-5329.

[31]     Yuan Y C, Sun B , Cao A M , et al. Heterogeneous nucleation and growth of highly crystalline imine-linked covalent organic frameworks[J]. Chemical Communications, 2018, 54: 5976-5979.

[32]     Hu L L, Yang L P, Zhang D, et al. Designed synthesis of SnO2-C hollow microspheres as an anode material for lithium-ion batteries[J]. Chemical Communications, 2017, 53(81): 11189-11192.

[33]     Sun B, Liu J, Cao A M, et al. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance[J]. Chemical Communications, 2017, 53(47): 6303-6306.

[34]     Liu X C, Piao J Y, Bin D S, et al. Controlled formation of uniform nanoshells of manganese oxide and their potential in lithium ion batteries[J]. Chemical Communications, 2017, 53(19): 2846-2849.

[35]     Zhang W, Cai J H, Huang P P, et al. The formation of an ordered microporous aluminum-based material mediated by phthalic acid[J]. Chemical Communications, 2016, 52(51): 8038-8041.

[36]     Mao W X, Lin X J, Zhang W, et al. Core–shell structured TiO2@ polydopamine for highly active visible-light photocatalysis[J]. Chemical Communications, 2016, 52(44): 7122-7125.

[37]     Zhang W, Yang L P, Wu Z X, et al. Controlled formation of uniform CeO2 nanoshells in a buffer solution[J]. Chemical Communications, 2016, 52(7): 1420-1423.

[38]     Lin X J, Zhong A Z, Sun Y B, et al. In situ encapsulation of Pd inside the MCM-41 channel[J]. Chemical Communications, 2015, 51(35): 7482-7485.

[39]     Yang F L, Zhang W, Chi Z X, et al. Controlled formation of core-shell structures with uniform AlPO4 nanoshells[J]. Chemical Communications, 2015, 51(14): 2943-2945.

[40]     Liu R R, Deng X, Liu X R, et al. Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy[J]. Chemical Communications, 2014, 50(99): 15756-15759.

[41]     Hu J S, Ji H X, Cao A M, et al. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties[J]. Chemical Communications, 2007, -29: 3083-3085.

[42]     Duan S Y, Piao J Y, Zhang T Q, et al. Kinetically controlled formation of uniform FePO4 shells and their potential for use in high-performance sodium ion batteries[J]. NPG Asia Materials, 2017, 9(7): e414.

[43]     Guo D, Lai L F, Cao A M, et al. Nanoarrays: design, preparation and supercapacitor applications[J]. RSC Advances, 2015, 5(69): 55856-55869.

[44]     Zhong A Z, Zou W, Mao W X, et al. A continuous etching process for highly-active Pd nanoclusters and their in situ stabilization[J]. RSC Advances, 2014, 4(45): 23637-23641.

[45]     Chi Z X, Zhang W, Cheng F Q, et al. Optimizing the carbon coating on LiFePO4 for improved battery performance[J]. RSC Advances, 2014, 4(15): 7795-7798.

[46]     Ma J M, Lei D, Duan X, et al. Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium-ion batteries[J]. RSC Advances, 2012, 2(9): 3615-3617.

[47]     Cao A M, Manthiram A. Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(19): 6724-6728.

[48]     Cao A M, Lu R, Veser G. Stabilizing metal nanoparticles for heterogeneous catalysis[J]. Physical Chemistry Chemical Physics, 2010, 12(41): 13499-13510.

[49]     Cao A M, Cao L, Gao D. Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles[J]. Applied Physics Letters, 2007, 91(3): 034102.

[50]     Cao A M, Monnell J D, Matranga C, et al. Hierarchical nanostructured copper oxide and its application in arsenic removal[J]. The Journal of Physical Chemistry C, 2007, 111(50): 18624-18628.

[51]     Niu F, Cao A M, Song W G, et al. La(OH)3 Hollow Nanostructures with Trapezohedron Morphologies Using a New Kirkendall Diffusion Couple[J]. The Journal of Physical Chemistry C, 2008, 112(46): 17988-17993.

[52]     Cao A M, Hu J S, Liang H P, et al. Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors[J]. The Journal of Physical Chemistry B, 2006, 110(32): 15858-15863.

[53]     Wang D, Guo J, Cui C, et al. Controllable synthesis of CNT@ ZnO composites with enhanced electrochemical properties for lithium-ion battery[J]. Materials Research Bulletin, 2018, 101: 305-310.

[54]     Liang S, Broitman E, Wang Y A, et al. Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility[J]. Journal of Materials Science, 2011, 46(9): 2928-2937.

[55]     Wang Y A, Liang S, Cao A M, et al. Au-mixed lanthanum/cerium oxide catalysts for water gas shift[J]. Applied Catalysis B: Environmental, 2010, 99(1-2): 89-95.

[56]     Tao X S, Sun Y G, Lin X J, et al. Construction of uniform ZrO2 nanoshells by buffer solutions[J]. Dalton Transactions, 2018, 47(37): 12843-12846.

[57]     Piao J Y, Bin D S, Duan S Y, et al. A facile template free synthesis of porous carbon nanospheres with high capacitive performance[J]. Science China Chemistry, 2018, 61(5): 538-544.

[58]     Sun Y G, Sun T Q, Lin X J, et al. Facile synthesis of hollow Ti2Nb10O29 microspheres for high-rate anode of Li-ion batteries[J]. Science China Chemistry, 2018, 61(6): 670-676.

[59]     Wu Z X, Li F H, Sun Y G, et al. Controlled synthesis of hierarchically-structured MnCo2O4 and its potential as a high performance anode material[J]. Science China Chemistry, 2017, 60(9): 1180-1186.

[60]     Lin X J, Lv R W, Cao A M. Preparation and catalytic properties of mesoporous carbon sphere[J]. Science China Chemistry, 2016, 46(10): 1126-1130.

[61]     Cao A M, Hu J S, Wan L J. Morphology control and shape evolution in 3D hierarchical superstructures[J]. Science China Chemistry, 2012, 55(11): 2249-2256.

[62]     Duan S Y, Wu Z X, Piao J Y, et al. Controlling the reaction kinetics in solution for uniform nanoshells of metal sulfides with sub-nanometer accuracy[J]. Science Bulletin, 2019, 64(4): 232-235.

[63]     Lin X J , Sun T Q , Sun Y G , et al. A Facile Construction of Yolk-Shell Structured Metal-TiO2 Nanocomposite with Potential for p-Nitrophenol Reduction[J]. New Journal of Chemistry, 2018, 42(5): 3184-3187.

[64]     Cao A M, Cao L L, Gao D. Fabrication of Nonaging Superhydrophobic Surfaces by Packing Flowerlike Hematite Particles[J]. Applied Physics Letters, 2007, 91(3): 034102-1,2,3.

[65]     Liang H P, Hu J S, Cao A M, et al. Facile Synthesis of Pt Multipods Nanocrystals[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(7): 2031-2036.

[66]     Zhang H X, Cao A M, Hu J S, et al. Electrochemical Sensor for Detecting Ultratrace Nitroaromatic Compounds Using Mesoporous SiO2-Modified Electrode[J]. Analytical Chemistry, 2006, 78(6): 1967-1971.

[67]     Liao Y D, Wu H J, Ding Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 445-456.

中国科学院   版权所有 © 中国科学院分子纳米结构与纳米技术重点实验室
地址:北京市海淀区中关村北一街2号  邮编:100190