English  |  中科院化学所  |  中国科学院
 首 页  人 员 研究方向 研究成果 科研设备 招生招聘 图片展 联系方式 链接 新闻动态
 
当前位置:首页 > 胡劲松 > 研究成果 > 论文2016
Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx
时间:2016-04-26 浏览:
  

Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx

Wen-Jie JiangLin GuLi LiYun ZhangXing ZhangLin-Juan ZhangJian-Qiang WangJin-Song Hu,Zidong Wei, and Li-Jun Wan

J. Am. Chem. Soc.2016138 (10), pp 3570–3578

DOI: 10.1021/jacs.6b00757

Publication Date (Web): February 23, 2016

Abstract (click  for pdf file)

Understanding the origin of high activity of Fe–N–C electrocatalysts in oxygen reduction reaction (ORR) is critical but still challenging for developing efficient sustainable nonprecious metal catalysts in fuel cells and metal–air batteries. Herein, we developed a new highly active Fe–N–C ORR catalyst containing Fe–Nx coordination sites and Fe/Fe3C nanocrystals (Fe@C-FeNC), and revealed the origin of its activity by intensively investigating the composition and the structure of the catalyst and their correlations with the electrochemical performance. The detailed analyses unambiguously confirmed the coexistence of Fe/Fe3C nanocrystals and Fe–Nx in the best catalyst. A series of designed experiments disclosed that (1) N-doped carbon substrate, Fe/Fe3C nanocrystals or Fe–Nx themselves did not deliver the high activity; (2) the catalysts with both Fe/Fe3C nanocrystals and Fe–Nx exhibited the high activity; (3) the higher content of Fe–Nx gave the higher activity; (4) the removal of Fe/Fe3C nanocrystals severely degraded the activity; (5) the blocking of Fe–Nx downgraded the activity and the recovery of the blocked Fe–Nx recovered the activity. These facts supported that the high ORR activity of the Fe@C-FeNC electrocatalysts should be ascribed to that Fe/Fe3C nanocrystals boost the activity of Fe–Nx. The coexistence of high content of Fe–Nx and sufficient metallic iron nanoparticles is essential for the high ORR activity. DFT calculation corroborated this conclusion by indicating that the interaction between metallic iron and Fe–N4 coordination structure favored the adsorption of oxygen molecule. These new findings open an avenue for the rational design and bottom-up synthesis of low-cost highly active ORR electrocatalysts.

 
 
【打印本页】【关闭本页】
中国科学院   版权所有 © 中国科学院分子纳米结构与纳米技术重点实验室
地址:北京市海淀区中关村北一街2号  邮编:100190